Nuclear binding energy predictions using neural networks: Application of the multilayer perceptron
نویسندگان
چکیده
In recent years, artificial neural networks and their applications for large data sets have become a crucial part of scientific research. this work, we implement the Multilayer Perceptron (MLP), which is class feedforward network (ANN), to predict ground-state binding energies atomic nuclei. Two different MLP architectures with three four hidden layers are used study effects on predictions. To train architectures, two inputs along latest mass table changes in energy predictions also analyzed terms input channel. It seen that using appropriate putting more physical information channels, can make fast reliable nuclei, comparable microscopic density functionals.
منابع مشابه
Recent Developments in Multilayer Perceptron Neural Networks
Several neural network architectures have been developed over the past several years. One of the most popular and most powerful architectures is the multilayer perceptron. This architecture will be described in detail and recent advances in training of the multilayer perceptron will be presented. Multilayer perceptrons are trained using various techniques. For years the most used training metho...
متن کاملRecognition Offline Handwritten Hindi Digits Using Multilayer Perceptron Neural Networks
Handwritten Hindi digit recognition plays an important role in eastern Arab countries especially in the courtesy amounts of Arab bank checks. In this paper, we proposed an efficient offline handwritten Hindi digits recognition system and developed using Multilayer Perceptron Neural Network (MLP). The implemented system recognizes separated handwritten Hindi digits scanned using a scanner. The s...
متن کاملChannel Equalization Using Multilayer Perceptron Networks
In most digital communication systems, bandwidth limited channel along with multipath propagation causes ISI (Inter Symbol Interference) to occur. This phenomenon causes distortion of the given transmitted symbol due to other transmitted symbols. With the help of equalization ISI can be reduced. This paper presents a solution to the ISI problem by performing blind equalization using ANN (Artifi...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Classification of fused face images using multilayer perceptron neural network
This paper presents a concept of image pixel fusion of visual and thermal faces, which can significantly improve the overall performance of a face recognition system. Several factors affect face recognition performance including pose variations, facial expression changes, occlusions, and most importantly illumination changes. So, image pixel fusion of thermal and visual images is a solution to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics E-nuclear Physics
سال: 2021
ISSN: ['0218-3013', '1793-6608']
DOI: https://doi.org/10.1142/s0218301321500178